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range of grain sizes and the other containing particles of a
uniform size, are both tested (in air and vacuum) at the same
unit weight (used as the criterion of denseness in these ex-
periments), the well-graded material will be in a relatively
looser state than the uniform soil, and greater depths of
penetration will be recorded in it. Thus it is seen that the
distribution of grain sizes also affects the results.

Further experiments are required to elucidate the effect
of vacuum level and duration on the effective coefficient of
friction of soils of different grain sizes.

Conclusions

In summary, it may be said that, on a qualitative theoreti-
cal basis, other factors being equal, dynamic penetration of
freely falling probes into a densely packed cohesionless
granular mass in air will be very much less than into a loosely
packed granular material hi air. Penetration into a loosely
packed granular material in vacuum will be less than hi to a
loosely packed granular material in air, and penetration into
a densely packed mass in vacuum will be greater than into a
densely packed mass in air. The results of the experiments
tend to confirm these conclusions and other tentative quali-

tative deductions on the frictional behavior of soils exposed
to vacuum conditions.
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Analysis of Foldability in Expandable Structures
H. U. SCHUERCH* AND G. M. SCHINDLER1"
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Outlines for a general theory of large deformations, including folding of arbitrary inexten-
sible membranes, are presented. The approach to the problem uses isometric mapping
techniques complemented by the additional topological constraints of the folding problem
in real membrane structures. The theory is applied to an inextensible membrane in the
form of a torus. Rigorous solutions are found for a particular class of deformations. Theo-
retical results are verified qualitatively by realization of predicted folding patterns on two
torus modeJs.

Nomenclature

E,F,G = Gaussian coefficients of the first fundamental form
R = radius of circumferential center line of torus
S = surface
X = radius vector
f,g,h,k = auxiliary functions of (Ujv)
n = integer
p = deformation parameter
utv = curvilinear surface coordinates
x,y,z = Cartesian coordinates
X = direction of propagation on surface
p = radius of meridional circular torus section

Superscripts and subscripts
* = function of the deformed surface
(u), etc. = variable of a function
u, etc. = partial derivative of a function with respect to the

variable u
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I. Introduction

EXPANDABLE pneumatic structures, i.e., structures
that can be packaged into small volumes and erected by

inflation into relatively rigid devices, have been considered
for a number of space missions. Of particular interest is the
design of expandable large-sized manned orbital space labora-
tories in the form of a modified torus, x either partially or fully
constructed from flexible materials.

Other examples where expandable structures can find ap-
plications are the large surface required for reflectors of
electromagnetic radiation (Echo satellite), collectors for solar
energy, and expanding and retracting devices for manipula-
tion of instruments during flight, re-entry, or for operations
after landing on foreign celestial bodies.

In many of these applications, the operating pressure and/
or the size of the expandable structure is such that consider-
able structural forces arise from pressurization. This re-
quires a wall construction that is strong and, as a consequence,
stiff, at least in directions tangential to the surface. Thus,
although optimum design and materials selection may result
in a thin-walled strong shell that retains sufficient bending
compliance to allow relatively sharp bending radii, these
designs exhibit normally sufficient membrane stiffness to
limit the membrane strains to small values. As a limiting
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Fig. 1 Isometric deformation of torus membrane by
reflection on intersecting planes

3) The topological characteristics of the surfaces S* must
be equal to the topological characteristics of the original
surface S. This refers particularly to the surface connectiv-
ity (genus) and surface orientation (insides of closed surfaces
must remain inside). The condition of invariant connectivity
excludes, for instance, the case of mapping a closed, periodic
surface upon an infinitely extended open surface. An ex-
ample of this is given in the mapping of a torus upon a cor-
rugated tube, discussed in Sec. IV. The topological
condition of surface orientation must be applied to exclude
those deformations which, although isometric and con-
tinuous, would require the membrane to change sides by
mutual permeation.

An example of admissible and inadmissible isometric
deformations generated by reflection of the surface on inter-
secting planes and involving ridge formation is shown in Fig.. 1.

case, such structures can be considered as inextensible but
completely flexible membranes.

A genera] theory of "moment]ess" (i.e., flexible) shells,
with a detailed discussion of their inextensible deformation
characteristics, is presented, for instance, in Ref. 2. The
discussion in Ref. 2 is limited, however, to shells of revolution
and concerns itself primarily with infinitesimally small de-
formations and finite bending radii in the normal sense of
the theory of elastic structures. For the purpose of an
analytical treatment of the packaging and folding problem
of expandable structures, a more general theory is required.
Such a theory can be developed based upon isometric map-
ping techniques.3 ~5

Other applications of the approach described here have
come to the author's attention after the original preparation
of this report. Hemp7 has used differential geometrical rela-
tions for a very general treatment of shell deformations.
Williams8 uses general surface coordinates for studies of free
surface conditions in liquids, in which case the tension rather
than the metric of the surface remains invariant.

II. General Criteria for the Deformation of
Inextensible Membranes

Consider a thin-walled structural shell. Its shape can be
described by a neutral surface S located between the two
faces of the shell. Assume that the neutral surface admits no
membrane strains in tangential direction and that the shell
is completely compliant in bending. Such a structural
shape will be described as an inextensible membrane.

Let the neutral surface S be deformed continuously into
a consecutive set of new surfaces S* (p), where p is a continu-
ously varying parameter. For the corresponding inexten-
sional membranes to be deformable into the consecutive
shapes described by the parametric set of surfaces S*, the
following conditions need to be satisfied:

1) All surfaces of the set S* must be isometric with $; i.e.,
the transformation S -> S* must retain all lengths (and,
consequently, all angles) on the entire surface. Isometry of
transformation satisfies the condition of zero membrane strain
required by inextensible membranes.

2) In the domains where the original surface S is con-
tinuous, the surfaces of the set S* also must be continuous.
It will not be required, however, that the derivatives of the
surfaces S* be continuous at all points. Thus, the deforma-
tion may involve ridges and/or folds along certain lines that
may be either fixed on the surface or traveling over the sur-
face with a variation of the deformation parameter p. The
admission of slope discontinuities for the deformation of mem-
branes constitutes a departure from the usual conventions
of deformations in thin shells. For instance, closed analyti-
cal surfaces of continuously positive curvature (egg-surfaces)
normally are considered as rigid.2- 4 This is true only if
deformations involving slope discontinuities are excluded.

III. Basic Equations for Isometric Deformation
of Surfaces

Let the inextensible membrane in consideration be repre-
sented by its neutral surface S. Its analytical expression
may be given by the vector X(MtB) extending from an origin
0 to a point P on the surface and referred to the three-
dimensional Euclidian system of coordinates (x,y,z) as shown
in Fig. 2.

The parameters u and v describe a parameter net of curvi-
linear coordinates u = const and v = const on the surface
S. The vector X(M(t)) can be written in terms of its com-
ponents as follows:

(1)
The "infinitesimal" vector dX from the point Pu,r) to the

point Q(U+du,v+dv) is given by the components

lxu du + xv dv
= I yu du + yv dv

\zu du + zv dv
(2)

where the subscripts refer to the partial derivatives: xu =
'bx/'bUj etc.

The absolute value of dK is equal to the length of the line
element ds of the surface. The square of the differential
length, ds2, can be obtained by scalar multiplication of dK
with itself:

(ds)2 = (dXdK) = E(u,v} du2 + 2F(u,v)dudv + G(u,V)dv* (3)

This is the "first fundamental form" of the surface S with
the Gaussian fundamental functions of u and v:

yuyv zuzv (4)

Consider now a second surface S* that is represented by
the vector X* (u,v) with the coordinates #*(„,„), y*(u,v), &*(u,v)
referred to the same parameters u,v as X(U,V). The two sur-
faces S and S* are called locally isometrical if, in the points
u,v on S, the differential length ds is equal to the differential
length ds* in the corresponding point u,v on S*. This means
that for arbitrary directions of propagation X = du/dv the
equation

Edu* + 2Fdudv + Gdo*
E* + 2F*dudv +

2F\ + G
2F*\ = 1 (5)

must be satisfied. Here E*(u,v o, (?*(«,„) are the Gaus-
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sian fundamental quantities of S* referred to the same curvi-
linear surface coordinates u,v to which S is referred. The
two surfaces S and S* are entirely isometrical if Eq. (5) holds
for all points (u,v) and for arbitrary directions X. This is
possible only if the following identities hold:

u= Constant

ipi __ z/7* p — T/7*

Let the surface S* be represented by

X =

G = G* (6)

(7)

The necessary and sufficient condition that S* be isometri-
cal to S is that the components #*, y*, 2* satisfy the follow-
ing system of partial differential equations:

(xu*)2 + (yu*)2

xu*xv* + yu*y*
fe*)2 + fa,*)2 + fe*)2 = 0

(8)

where E, F, G are the Gaussian fundamental quantities of
the original surface S.

The entirety of surfaces that are isometrical to the given
surface S is obtained from the entirety of solutions x*,
y*yz* of the system (8).

Trivial solutions of (8) can be found by rigid body displace-
ments :

= x +

* = Z +

y* = y (9a)

where cb c2, c3 are arbitrary constants and p is the continu-
ously varying deformation parameter. Another class of
isometric deformations is obtained by intersecting the surface
by a plane and reflecting the portion of the surface on one
side of the plane upon the other side, such as shown in Fig. 1.
For instance, if the reflecting plane is parallel to the xy plane
and is described by z = p, then the coordinates of the de-
formed surface are

y* = y
z* = z
z* = 2p-z

(9b)
z < p
z > p

This deformation generates normally a ridge along the line
of intersection traveling on the surface with a change of loca-
tion p of the reflecting plane.

Since the system of Eq. (8) is nonlinear in the derivatives
of its functions, it will be difficult to find general solutions.
In specific cases, it may be convenient to transform (8) into
a linear system by the following substitution:

xu* = E1/2 cos/ cos*;
yu* = El/2 cos/ singr

2tt* =-#1/2 sin/

£v* = (r1/2 cosft cos&
y,* = £1/2 Cosft sinA;

(10a)

(10b)

where /(„,„), ^(M)^), h(U,V), k(U,v) are four auxiliary functions of
u and f.

The first and third conditions of (8) are satisfied implicitly
by (10a,b). The second condition in (8) yields the algebraic
relation

cos/ cosh cos(g - k) + sin/shift = F/(EG)^2 (11)

The integrability conditions for twice-differentiable domains

v= Constant

V^ X(u,v)

Fig. 2 Coordinate system for general surface

of the surface (i.e., domains excluding slope discontinuities)
require

Differentiating (lOa) and (lOb) and substituting into (12),
one obtains

cos/ cosg) =
(d/dv)(EV2cosfsmg) =

) (G1/2 cosh cosk)
cosh sink)
sinh)

(13)

The system (13) constitutes three simultaneous differential
equations for the four functions /, g, h} k of u and v, which
are, as an additional condition, related by the algebraic
equation (11). These four equations are equivalent to the
system (8) and may in specific cases be more convenient for
the purpose of finding nontrivial, twice-differentiable iso-
metric deformations.

A general solution will not be attempted here. Instead,
the specific case of an inextensible torus membrane will be
investigated.

IV. Isometric Deformation of a Circular Torus

A class of deformations for a torus, as shown in Fig. 3,
can be obtained explicitly by integration of Eqs. (11) and
(13). For the coordinate system shown, the radius vector
to a point (u,v) on the torus is given by

X =
\R-\-p cosu) cosA

= ( (R + p cosu) siuv 1
p siiiu /

(14)

where R is the distance from the origin 0 to the center line of

pdu

(R + p cos u) dv

Fig. 3 Torus coordinates
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the torus,, and p is the radius of the meridional circle which
generates the torus by revolution about the z axis.

The curvilinear coordinates u = const and v = const, in
this case, represent parallel circles and meridians, respec-
tively; u is the angle between the radius p and the x-y plane,
and v is the central angle between the plane containing the
meridian v = const and the x-z plane. The coordinates u
and v are equivalent to the latitude and longitude angles
conventionally used as spherical coordinates.

0 < p < 1

Fig. 4 Solutions for isometric torus sections according
to Eq. (20)

Fig. 5 Closed isometric, meridional torus cross sections
obtained by reflection

By inspection of the coordinate geometry shown in Fig. 3,
the line element of the torus is

ds* = + (R + p cos^)2 dv2 (15)
and the Gaussian fundamental quantities by comparing (15)
with (3) become

E = p2 F = 0 G = (R + p cosw)2 (16)

Solutions for isometric deformations will now be restricted
to those where parallel circles remain curves in parallel planes
fe* = 0).'

With the expressions in (16), a set of solutions of (11) and
(13) then can be given by

/ = cos"1 (siim/p)
g = — TT + pv
h= 0
k = PV + (7T/2)

Inserting these solutions into Eqs. (lOa) and (lOb) yields

xu* = — (p/p) siim cospv
yu* = — (p/p) sinw siupv
*u* = p f l -

(17)

(18a)

and

xv* = — (R + p cosu) siupv
(18b)

From these equations, the components of X* describing
the surface S* can be obtained by quadrature:

y
= (l/p)(R + p cosu) cospv — ci

* = (l/p)(R + p cosu) smpv — c2

= * J (19)

The three integration constants ci, GI, c-6 represent a rigid
body translation that can be disregarded for further dis-
cussion.

In this case, the surface S* is generated by revolution of a
meridional curve denned in the x-z plane by the parametric
relation

(20)

:w* - (!/?)(« +

/
w r i

1 - i sin2^*o I r>2

The integral expression of the second equation in (20)
represents an elliptical integral of the second kind. Values
for this integral, tabulated in Ref. 6, have been used for the
construction of the meridional curves discussed in Sec. V.

V. Discussion of Results

Solutions for the meridional shapes according to Eq. (20)
are shown in Fig. 4 for selected parameters p. If p is any
value between zero and one, the curve consists of segments
of real branches (Fig. 4a). The openings between these
branches correspond to parameter values u > sin"1?? (i.e.,
to those values of u for which the radicand [1 — (1/p2) sin2^]
is negative). These solutions cannot satisfy the topological
restraints for a complete torus surface and therefore will not
be considered further.

It will be observed that the meridional curves described
by (20) even for p > I are not necessarily closed; thus the
conditions of equal topological connectivity between S and
S* are not satisfied a priori. Closed meridians can be ob-
tained by axial folding, i.e., by reflection on a plane z = const



APRIL 1963 FOLDABILITY IN EXPANDABLE STRUCTURES 877

through the parallel circles u = ±(7r/2). The result is a
lenticular section with two ridges, as shown in Fig. 4c. This
reflection can be expressed mathematically by the conven-
tion that the square root under the integral in (20) be taken
positive for — ir/2 <u< ir/2 and negative for ?r/2 <u< 37T/2.

With the convention of simple reflection at u = ±(?r/2),
closed curves are obtained for all p > 1. For p = I , a circle
is obtained which generates exactly the original torus (Fig.
4b). As p approaches infinity, the meridional curve de-
generates into a line covering twice the z axis from — p(w/2)
to+p(7r/2)(Fig.4d).

A set of more general closed meridional sections can be
obtained by reflection on planes through u = const and
u + ir = const, as shown for the case p = 2 in Fig. 5a. Fur-
ther shapes, particularly shapes of vanishing cross-sectional
area, may be obtained by subsequent reflections on other
planes z = const, as shown in Fig. 5b.

A similar situation exists with respect to the circumfer-
ential coordinate v. Topological connectivity of the surface
in circumferential direction requires that the surface 8* be
periodic in v with the period 2ir. This can be accomplished,
for instance, by a circumferential folding technique as follows.

Consider n equal segments of the deformed torus where the
end meridians of each segment enclose a central angle of
2ir(p/n). Each segment now can be reflected on a vertical
plane bounded by the z axis, intersecting the segment at an
angle [(p + l)/n]ir. By this reflection, the segment will be
folded into itself, and the increment in central angle between
end meridians becomes 2ir/n. By joining all n segments,
the topological periodicity condition that the end of the last
segment v = 2ir coincide with v = 0 is satisfied. Figure 6
shows a circumferential folding schematic for p = 3, n = 2.

By this method, certain domains of the deformed surface
are covered by the membrane in multiple layers. The mini-
mum number of layers is three for 1 < p < 3. For p = 3,
the whole torus domain is covered triply. Further increase
of 3 < p < 5 will require quintuple coverage of certain
domains up to p = 5, etc.

Finally, it should be remarked that the necessity for circum-
ferential folding disappears if the torus can be cut along any
meridian (torus-segment). Such a structure may be folded
into a tight scroll of vanishing enclosed volume and frontal
area.

VI. Experimental Realization

Qualitative realization of the theoretical data presented
has been obtained by experimentation with two torus models.

Outside
Cross Fold

Outside Fold

Inside
Cross Fold

Fig. 7 Full torus, expanded

Fig. 8 Quarter torus, expanded

For this purpose, a full and a quarter torus have been fabri-
cated with the following overall dimensions: R = 19.5 in.
andp = 3.5 in.

The method of fabrication consists of winding two over-
lapping layers of 2.5-mil thickness adhesive coated tape
(trademark "Scotchtape") on an inflatable mandrel made
from a standard size 670-15 automotive inner tube. The
tape is applied in such a manner that the adhesive coated
sides of the two layers are in mutual contact. This process
results in an average wall thickness of 7 mil. After comple-
tion of the winding process, the rubber tube is removed
through a slit, and the slit is repaired for the closed torus
by an overlay of tape. The models fabricated in this fashion
approximate closely the idealized conditions of inextensible
membranes.

Fig. 6 Circumferential folding schematic of torus for
n = 2, p = 3 Fig. 9 Full torus, folded (p = 3, n = 2)
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Fig, 10 Quarter torus, folded (p = 4)

The two torus models are shown in Figs. 7 and 8 in their
expanded condition. Figure 9 shows the folded shape of the
complete torus with circumferential and axial folding accord-
ing to the folding schematic shown in Figs. 5b and 6. Figure
10 shows the quarter torus segment folded into a closed
shell (p = 4) exhibiting the predicted lenticular meridional
shape. Figure 11 shows the torus segment in a tight scroll
according to Fig. 4d.

An interesting variant of folding deformation deviating
from rotational symmetry is shown in Fig. 12. This shape
involves deformation of the original parallel circles u =
const into leafed curves resembling epicycloids. The reverse
fold required at the cusps between leafs is topologically pos-
sible since the cross section at these meridians degenerates
into a double line at these locations. Although, in principle,
the leafed shape is possible for a completely closed torus,
attempts to produce this pattern from the original full torus
were not successful, indicating that no continuous isometric
and topologically invariant set S* exists between the leafed
"epicycloid" shape and the original complete circular torus.

VII. Concluding Remarks

It is clear that, for instance, the circumferential folding
technique shown in Fig. 6 in its pure form is possible only for
infinitely thin membranes. For practical structural shells
of finite thickness, such a problem can be overcome, for in-
stance, by a periodic variation of the torus cross section,
allowing finite spacing of the concentric layers. Further-
more, axial folding involving concave folds such as shown in
Figs. 5b and 9 can be used to reduce the difficulty in circum-
ferential folding.

A second, possibly more serious practical difficulty, is the
presence of stationary and traveling cross-folds (i.e., folds
crossing ridges), as indicated in Fig. 6. Practical implemen-
tation may require specific provisions in the wall design
allowing for finite membrane strains in the domains occupied
by cross-folds. Other possibilities may be provided by dif-
ferent folding patterns, such as those of the type shown in
Fig. 12, which may eliminate traveling cross-folds.

Further study should be directed towards isometric de-
formations that do not necessarily retain rotational sym-

Fig. L I . Quarter torus, folded (p -

Fig. 12 Full torus, folded (epicycloid)

metry. Also of interest will be the expansion of the general
theory to shells that admit small but finite membrane strains.
Such an expansion will be particularly useful for a study of
local-fold and cross-fold areas.
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